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(A) Statement of the problem studied

The problem studied in this research project was the inefficiency in the combustion process in a normal diesel
engine. The question posed was what is the role of electronically excited oxygen in the combustion process?
Can electronically excited oxygen be used to improve the performance of a diesel engine? A further problem
studied was the electronic structure of extended molecular systems containing oxygen, especially as pertaining
to electronically excited oxygen.

(B) Summary of the most important results
The results show that electronically excited oxygen, Oz(l)g), participates in cool flame combustion through a

chain mechanism involving a manifold of electronically excited molecular species. The chain reaction consists
of the following three processes:

R, +0,('a,)—> R0, 1)
R,0,—* *R,CO" +R.CO )

3.1 * Ig- k3 1,3 1
R,CO"+ 0,2, ) 2R,CO+0,('a,) 3)

The first of these reactions (k1) is a spin allowed reaction of an organic molecule (fuel) R, forming an organic
peroxide, hydroperoxide or endoperoxide, R,0,, depending on the composition of R,, steric factors and
conditions. As an example, the reaction of singlet delta excited oxygen with olefins is a 1,2 cycloaddition
process'” forming dioxetanes. These dioxetanes are thermally unstable and decompose (k) into organic
carbonyls, ketones and aldehydes, where one of the product carbonyl species, represented by *'R,CO”, is found
in an excited electronic state with triplet or singlet spin and the other is in the ground state, symbolically R.CO.
The excited carbonyl molecule undergoes an energy transfer reaction (k3) with excitation of ground state
oxygen to regenerate singlet delta excited oxygen. This energy transfer reaction has been seen to be efficient for
both triplet and singlet excitation of the carbonyl™*'2. The enhancement of methane and ethylene cool flames
by the photoexcitation of formaldehyde' can be explained through energy transfer excitation of oxygen to the
singlet delta state, as in 43, followed by the chain, &, to k.

The chain reaction is vulnerable to termination through both radiative and radiationless degradation
modes

R,CO"+ M—* 5 R,CO+ M {+hv} 4)




0,('a,)+ M—=s 0,(°s;)+ M +hv) (5)

The production of excited carbonyl products (k,) in the decomposition of the organic peroxides leads to the
formaldehyde-like chemiluminescence (ks) of these reactions"*'!. The radiative emission of the carbonyl (k)
has been measured'*' as 10 photons per excited R,CO", implying both a weak emission and the possibility of
a reasonable chance for the chain-sustaining reaction with ground state oxygen. Quenching'®"® of the singlet
delta excited oxygen (ks) can occur with a number of possible collision partners, M, where Og(})g) itself is one
of the more efficient quenchers®®??. However, the Oy 1)g) - Og(i)g) dimole radiation at 0.633 : is not prominent
in cool flames, probably because the concentration of 02(')g) is low relative to other species. This suggests
perhaps a reasonable probability of reaction with the starting hydrocarbon, which is initially in greater
abundance. The radiationless processes are expected to be relatively slower.

At elevated temperatures of 600 K that are much lower than normal combustion temperatures, electronically
excited oxygen reacts with hydrocarbons in reaction (1) above (for instance, through ene-reactions™) at rates
that are 10-20 times faster than quenching®® of the excited state in reaction (5) above. This is an indication that
the linear chain mechanism of reactions (1)-(3) above is a realistic and viable possibility for cool flame
combustion processes.

Thermodynamic conditions within a diesel cylinder leading to significant reduction in ignition delay are
consistent with cool flame spontaneous ignition. The significance is that reduction in ignition delay is
accompanied by a reduction in the amount of fuel burned in the pre-mixed combustion phase and an increase in
the mixing-controlled phase, thus leading to improvement in diesel performance (Iess knock and soot). The
research involved investigating methods of gaining control of this process through the infusion of energy during
the diesel cycle to excite oxygen to its electronically excited singlet spin state, Oz(})g).

A further result is that a valence bond analysis® 2 of assemblies of oxygen molecules provides insight into their
electronic structure. The significance of this result is in explaining the nature of bonding between oxygen atoms
in an extended molecular system.
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